

Introduction

Students in CS1 will experience four sequenced lessons in image processing. Image processing is fundamental to multiple cybersecurity strategies in biometrics.

First Quarter: Students are introduced to cybersecurity, biometrics, and coordinate concepts through game programming with Microsoft's TouchDevelop.

Second Quarter: Students master coordinate regions through 3D Modeling with PLaSM.

Third Quarter: Students apply coordinate concepts in image processing with Python programming.

Fourth Quarter: Students synthesize knowledge in a Steganography semester project in Python.

Region Boxes & Facial Recognition

- Research and essential questions on facial recognition: > Why are coordinate points important?
 - How are they being used today?
- > What are the benefits and concerns?
- Review Cartesian plane and compare the graphic coordinate system used in TouchDevelop through Mark the Spot game.
- Understand regions of pixels (X1,X2,Y1,Y2)
- Students will practice identifying regions with a hands-on activity

(0,0)			Tap/click at	: (542, 224)		2	(800,0)	(a) 30 Laba - PLaSM File - Settings - Help -
		Tap	o here to	o try ag	ain			<pre>1 c = CUBE(2) 2 MOVE(c, -1, -1, -1) 3 COLOR(c, GOLD) 4 c1 = CYLINDER(0.8, 3) 5 MOVE(c1, 0, 0, -1.5) 6 c2 = COPY(c1) 7 ROTATE(c2, 90, X) 8 c3 = COPY(c2) 9 ROTATE(c3, 90, Z) 10 SUBTRACT(c, UNION(c1, c2, c3)) 11 SHOW(c)</pre>
							(800,400)	
Mark the Spot on TouchDevelop								3D Modeling with

RET Site: Cyber Security Initiative for Nevada Teachers (CSINT)

Fabian Avalos, Procter R. Hug High School Amee Lombardi, Damonte Ranch High School David Feil-Seifer and Shamik Sengupta, University of Nevada, Reno

Unplugged Binary Activity

- Research and essential questions on binary numbers: > How do computers represent numbers beyond 0 and 1? > What are the smallest pieces of data on a computer ? > How are characters represented on a computer?
- Student learn how to create binary numbers up to 255
- Students learn the basics of computer memory
- Pair programming binary number practice
- Pair programming binary to ASCII practice

Source: csunplugged.org

- Research and essential questions on coordinate regions: > Where is the origin?
 - > How do you define images in pixels? > How do you identify region?
- Students will review ranges
- Students learn how to use OpenCV in Python to copy and move a region of an image
- Practice: Copy and move the eyes of the baboon
- Students will then play a game of Tic-Tac-Toe where they will have to copy an "X" or an "O" and move it to the correct location by using Python

Region of Images with OpenCV

Steganography

- - images?
- using OpenCV.

Evaluation

- Schoology.
- as the pre-assessment.

Research and essential questions on steganography:

- > How are images created by a computer?
- > How are secret messages stored within computer

Students will process a color image into a grayscale image

Students will conduct several different image processing strategies using OpenCV.

As semester projects, students will write a program in Python that will decode a message hidden in a gray scale image and then a second program to encode their own messages in gray scale images.

Color to Grayscale to Edge Detection with OpenCV

• Pre-Assessment: Will be given at the beginning of the semester. This will be in multiple choice format using

Post-Assessment: Will be given at the end of the semester as a stand-alone assessment or may be embedded into the final exam. The post-assessment questions will be the same

